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Abstract. The process capability index Cpc has been widely used in the
manufacturing industry to provide numerical measures on process perfor-
mance. Since Cpy is a yield-based index which is independent of the target T,
it fails to account for process centering with symmetric tolerances, and pre-
sents an even greater problem with asymmetric tolerances. Pearn and Chen
(1998) considered a new generalization Cgk which was shown to be superior
to other existing generalizations of Cpi for processes with asymmetric toler-
ances. In this paper, we investigate the relation between the fraction non-
conforming and the value of C”, . Furthermore, we derive explicit forms of the
cumulative distribution function and the probability density function for the
natural estimator Cp,, under the assumption of normality. We also develop a
decision making rule based on the natural estimator Cyy, which can be used to
test whether the process is capable or not.

Key words: Asymmetric tolerance; Decision making rule; Normally distrib-
uted process; Process yield.

1 Introduction

Process capability indices (PClIs), providing numerical measures of whether or
not the ability of a manufacturing process meets a preset level of production
tolerance, have recently been a research focus in quality assurance literature.
Examples include Kane (1986), Chan et al. (1988), Zhang et al. (1991), Boyles
(1991 and 1994), Pearn et al. (1992), Vinnman and Kotz (1995), Vinn-
man(1997), Pearn and Chen (1998), Chen et al. (1999), and Kotz and Johnson
(2002).

Among various capability indices that have been introduced, Cpy is de-
fined as
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min{USL — u, u— LSL}
Cok = = ; (1)

which can be alternatively written as:

d—|pg—m
CPk = %7 (2)
where u is the process mean, ¢ is the process standard deviation, USL and
LSL are the upper and the lower specification limits, respectively,
= (USL+LSL)/2, and d = (USL — LSL)/2. The index Cyc has been
widely used in the manufacturing industry, and provides a measure of process
yield. In fact, we can calculate the process yield as

20(3C) — 1 < %Yield < ®(3Cy)

if the process is normally distributed, where ®(-) is the cumulative function
for the standard normal distribution. To investigate the relationship between
the capability indices and the process yield, Boyles (1994) considered the
index Spi, a generalization of Cpi, which is defined as:

oomto () (1)

where ®~! is the inverse function of ®. For normally distributed process, the
index Sy is a one-to-one transformation of fraction nonconforming (per-
centage of defective items). We note that given Sy = ¢, we can calculate the
process yield as 20(3c) — 1. Therefore, Sy represents the actual process yield
unlike Cp which is only approximately related to process yield (Boyles
(1994)).

A process is said to have a symmetric tolerance if the target value T is the
midpoint of the specification interval (LSL, USL), i.e. T = m. Although cases
with symmetric tolerances are common in practical situations, cases with
asymmetric tolerances (T # m) often occur in the manufacturing industry.

Since both C,x and Spi are independent of target value T, then they do not
take into account the asymmetry of the tolerance. Both Cpx and S fail to
distinguish between on-target and off-target processes for processes with
asymmetric tolerances. Hence, both C,x and Sy cannot provide consistent
and reasonable measures on process capability for processes with asymmetric
tolerances. To overcome the problem, Pearn and Chen (1998) proposed the
index C, which was shown to be superior to other existing generalizations
of Cpk IP or processes with asymmetric tolerances. Under the assumption of
normality, Pearn and Chen (1998) considered the natural estimator C”k of
C”k, and obtained the exact formula for the »-th moment. In this paper, we
1nvest1gate the relation between the fraction nonconforming and the value of
Cpy. Furthermore, we derive explicit forms of the cumulative distribution
function and the probability density function of the natural estimator C'k,
under the assumption of normality. We show that the cumulative dlstrlbutlon
function and the probability density function of the natural estimator Cpk can
be expressed in terms of a mixture of the chi-square distribution and the
normal distribution. The explicit forms of the cumulative distribution func-
tion and the probability density function considerably simplify the complex1ty
for analyzing the statistical properties of the natural estimator Cp We also
analyze the bias and the MSE of the natural estimator C for normally
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distributed processes with an asymmetric tolerance. In addition, we develop a
decision making rule based on the natural estimator Cgk, which can be used to
test whether the process is capable or not.

2 The generalization C

Pearn and Chen (1998) proposed index Cgk, a generalization of Cp for
processes with asymmetric tolerances. The generalization Cgk is defined as:
d— A"

Cgk = 30 ) (4)
where D,=USL -T, D, =T - LSL, d* = min{D,, D/},
A" = max{d*(u —T)/D,, d"(T — u)/D;}. Obviously, if T=m (symmetric
tolerance), then d* =D, =D, =d, A* = | = m| and Cgk reduces to the
original index Cpr. We note that the index C, obtains the maximal values at

w = T, regardless of whether the preset specn%catlon tolerances are symmetric
or asymmetric.

Sou LSL T usL

Fig. 1. Contours of Cgk(,u, 0) = c (bold) and Sy (1, 6) = Spi(T, d”/(3¢)) (thin) for ¢ = 1/3,2/3, 1,
4/3, 5/3, and 2 (top to bottom in plot) with (LSL, T, USL) = (10, 40, 50).

If u=T, then A*=0 and C; =d"/(30). Therefore, if u=T and
Cpx = ¢, then o = d"/(3c). Since both Cj and Sy are functions of (i, ), we
denote them by Cp\ (i, 0) and Sp(u, 0 SJ Figures 1 and 2 display the con-
tours of Cg (u, ) =c (bold) and Spk(u,0) =S (T,d"/(3c)) (thin) for
c=1/3,2/3,1 4/3 5/3, and 2 (top to bottom in plots) with asymmetric
cases (LSL,T, USL) = (10, 40, 50) and (LSL, T, USL) = (10,34, 50), i

:d:Dy=3:2:1and D;:d:D,=6:5:4, respectlvely Since C <
Spk (T,d*/(3C%,)) for all values of (u,0), we conclude that given a process
with C ,u,a)pf ¢ the fraction nonconforrmng would be guaranteed to be
less than that of a process with Sp(u,0) = Spi(T, d*/(3c)) which is
2{1 = ®[3S(T,d"/(3c))]}. For a given threshold value of C};, we note that
these contours are used to form boundaries, separating the acceptable values
from the unacceptable values of (u, ). In addition, we have
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sou LSL T UsL

Fig. 2. Contours of Cgk(,u, o) = c (bold) and Spk (i, o) = Spi(T, d*/(3¢)) (thin) for ¢ = 1/3,2/3, 1,
4/3, 5/3, and 2 (top to bottom in plot) with (LSL, T, USL) = (10, 34, 50).

spk(T,i) ;Ql{;®<mf{°”}) + lCD(3cmax{1 r})}

where r = D;/D,,. For example, ¢ = 1 with r = 3 gives the fraction noncon-
forming would be guaranteed to be less than 2{1 — ®[3S,(T,d"/(3¢c))]} =
2 — [®(3¢ /min{]1,r}) + ®(3cmax{l,r})] =2 — [®(3) + ®(9)] = 1350 PPM
for the asymmetric case (LSL, T, USL) = (10, 40, 50) in Figure 1, c = 1 with
r=3/2 gives the fraction nonconforming would be guaranteed to be
less than 2—[®(3)+ ®(9/2)] = 1353PPM for the asymmetric case
(LSL, T, USL) = (10, 34, 50) in Figure 2, where “PPM” denotes the “Parts-
Per-Million™.

3 Distribution of CJj,

To estimate the generahzatlon C"k, Pearn and Chen (1998) considered the
natural estimator Cp defined in the following. The natural estimator C
obtained by replacing the process mean u and the process variance o> by thelr
conventional estimators X and S, which may be obtained from a stable
process.
d — A"
5

. 5)
where d* = min{D,, D}, A* = max{d X T /D (T - X)/Dy},
X=>",Xi/nand S={(n—1)"" 3", ObVlously, if T=m

(symmetric tolerance), then d* =D, —Dg d A* |X —m| and C’k re-

duces to Cpk, the natural estimator of Cpk discussed by Kotz et al (1993).

We now define B = nl/z(d*/o— = (n—1)S%/6?, Z=1n"*X-T)/o,
Y = [max{(d*/D,)Z, —(d"/D)Z}]", 5 = nl/z(,u T)/o. Then the estimator
Cpy can be written as:

C// _ Vn_l(B_\/?)
Pl 3vnK

A~
Cpk =

(6)
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Under the assumption of normality of X, K is distributed as y2_;, a chi-
square distribution with n — 1 degrees of freedom, and Z is distributed as the
normal distribution N(J, 1) with mean ¢ and variance 1. Let ®(-) and ¢(-) be
the cumulative distribution function and the probability density function of
the standard normal distribution N(0, 1), respectively. Then, the cumulative
distribution function and the probability density function of Z can be ex-
pressed as: ®(z — 0) and ¢(z — ), respectively. Hence, the cumulative dis-
tribution function of Y can be expressed as:

Fy(y) = @[(D,/d")yy = 6] = ®[—(D,/d")/y — 9. ()
The probability density function of Y can be expressed as:
11(9) = 3775 (Dudl(D/d) 5 = 0]+ DglD/a )y +0). (8

Fy(y) and fy(y) can be used to derive the sampling distribution of Cgk (see
Appendix A).

Therefore, the cumulative distribution function of C can be obtained as
the following.

F RLy))A )y, x<0,
BZ
Fo ()= 4 1= Fy(B2) x =0, 9)

- {FK(L(XJ))fﬂy)dy, x>0,

and the probability density function of Cgk can be derived as:

}Of,( (L(x, B2t))fy (th) 2L(§7*,(th>dt, x <0,

S (x) = 1 , (10)
Ci OflfK (L(x, B20)) fy (B2t) %dt, x>0,

where B =n'2(d"/s), L(x,y)= (n—1)(B—yY2)?/(9nx?), Fk(-) is the
cumulative distribution function of K, fk(-) is the probability density func-
tion of K, Fy(-) is the cumulative distribution function of Y expressed as Eq.
(7), and fy(-) is the probability density function of Y expressed as Eq. (8).

As an illustration for some of the results obtained, we plot the probability
density functions of Cpk for an asymmetric case (D, :d : D, =6 :5:4) with
o=d"/3, £=-1.0,-0.5,0.5,1.0, and n = 10,20,50, where ¢ = (u—T)/o
and d*=min{D,, D,}. Flgures 3 and 4 dlsplay the plots of the probability
density functions of Cfj for &= —1.0(Cp, = 0.78) and & = 1.0(C, = 0.67),
respectively. From Figures 3 and 4 we opbserve that for n =10 the distribu-
tions are skew and have large spread. We also observe that as n increases the
spread decreases and so does the skewness. We also observe that the esti-
mated index C” « 1s approximately unbiased for sample size n > 50.

Pearn and &hen (1998) derived the r-th moment of C « Without using the
distribution of C? We note that the estimator Cp is blclSCd The magnitude
of the bias is B(Cy ) = (C” ) — Cp- The mean square error can be expressed
as MSE(Cl,) = Var(c” )+ BZ(C” ), where Var(Cl} ) = E(Cpy)* — E*(Cl)) is
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Fig. 3. The pdf of Cgk with ¢ = d*/3, ¢ = -1.0, and n = 10 (bottom), 20 (middle), and 50 (top)
for the asymmetric case D, :d : D, = 6 : 5: 4.

£E=1.0
4
3_
2_
1_
0" ok 0.g 1 1.2 1.4

Fig. 4. The pdf of Cgk withe = d"/3, ¢ = 1.0, and n = 10 (bottom), 20 (middle), and 50 (top) for
the asymmetric case D, : d: D, = 6 :5: 4.

the variance of C . To investigate the behavior of the estimator Cgk, the bias
and the mean squdre error are calculated (using Maple computer software)
for various values of ¢ = (u—T)/o, b=d"/s, d;, =d/D,, d, =d/D,, and
sample size n. )

Tables 1, 2, and 3 display the values of Cj, B(Cy,) and MSE(C” ) for
&=-1.0(0. 5)1 0, (d¢,d,) = (5/6,5/4), and n = 10(10‘350 with b = 3, 4 and
5, respectively. We note that the specification with (d,,d,) = (5/6, 5/4) is
asymmetric.

From Tables 1, 2, and 3, we observe that as the sample size n increases,
both the bias and the mean square error of C decrease. Figure 5 displays the
plot of the bias of Cg (vs.n) with ¢ =0, 1.0, dnd —1.0 (from bottom to top in
the plot) for fixed b =3, d, = 5/6, d, = 5/4. Figure 6 displays the plot of the
MSE of C" (vs. n) with & = 1.0, —1.0, and 0 (from bottom to top in the plot)
for fixed b = 3,d,=5/6,d, = 5/4
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Tablel The values of Cpy . B(Cy) and MSE(Cy) for b = 3, ¢ = -1.0(0.51.0, d, = 5/6,
= 5/4, and n = 10(10)50
n E=-10 E=-05 E=0 E=05 E=1.0
bias MSE  bias MSE  bias MSE  bias MSE bias MSE

10 0.0733 0.0651 0.0791 0.0806  0.0175 0.0807 0.0739 0.0785 0.0628 0.0575
20 0.0325 0.0234 0.0366 0.0295 -0.0099 0.0311 0.0342 0.0296 0.0278 0.0214
30 0.0209 0.0141 0.0237 0.0179 -0.0147 0.0195 0.0223 0.0181 0.0179 0.0131
40 0.0154 0.0101 0.0175 0.0128 -0.0160 0.0142 0.0164 0.0130 0.0132 0.0094
50 0.0122 0.0079 0.0139 0.0099 -0.0162 0.0113 0.0130 0.0101 0.0104 0.0073

C”k 0.7778 0.8889 1.0000 0.8333 0.6667

Table 2. The values of Cpy, B(Cgk) and MSE(C”k) for b =4, ¢ = -1.0(0.51.0, d, = 5/6,
d, = 5/4, and n = 10(10)50

n =-1.0 =-05 E=0 =05 E=10

bias MSE  bias MSE  bias MSE  bias MSE  bias MSE

10 0.1047 0.1264 0.1105 0.1485 0.0490 0.1474 0.1053 0.1427 0.0942 0.1115
20 0.0464 0.0449 0.0505 0.0535 0.0041 0.0551 0.0482 0.0523 0.0418 0.0403
30 0.0298 0.0270 0.0327 0.0322 -0.0058 0.0341 0.0312 0.0317 0.0268 0.0244
40 0.0220  0.0192 0.0241 0.0230 -0.0094 0.0248 0.0230 0.0227 0.0198 0.0175
50 0.0174 0.0150 0.0191 0.0179 -0.0110 0.0195 0.0182 0.0177 0.0156 0.0136

Cgk 1.1111 1.2222 1.3333 1.1667 1.0000

Table 3. The values of Cp,

d, = 5/4,and n = 10(10)50

B(Cp,) and MSE(C],) for b =5, ¢ = —=1.0(0.5)1.0, d; = 5/6,

n &E=-1.0 E=-05 E=0

e

=05 &E=10

bias MSE  bias MSE  bias MSE  bias MSE  bias MSE

10 0.1361 0.2092 0.1419 0.2380  0.0804 0.2357 0.1367 0.2286 0.1256 0.1871
20 0.0603 0.0739 0.0644 0.0851  0.0180 0.0867 0.0621 0.0826 0.0557 0.0669
30 0.0387 0.0444 0.0416 0.0511  0.0032 0.0532 0.0401 0.0499 0.0358 0.0403
40 0.0285 0.0316 0.0307 0.0365 -0.0028 0.0385 0.0296 0.0356 0.0263 0.0288
50 0.0226 0.0246 0.0243 0.0283 -0.0058 0.0302 0.0235 0.0277 0.0209 0.0224

Cgk 1.4444 1.5556 1.6667 1.5000 1.3333

From Tables 1, 2, and 3, we also observe that as the value of b increases,
both the bias and the mean square error of C k increase for fixed dy, d,,, &, and
n. Figure 7 displays the plot of the bias otp C”k (vs. n) with b =3, 4, and
5 (from bottom to top in the plot) for fixed f 0.5, d,=5/6, d, =5/4.
Figure 8 displays the plot of the MSE of Cp (vs. n) with b = 3, 4, and 5 (from
bottom to top in the plot) for fixed £ =0.5, d, =5/6, d, = 5/4.

We note that C} is a biased estimator. The results in Tables 1-3, F igures
5 and 7 indicate that the bias of C” ok 18 positive when p 7 T. That is, Cl, is
generally overestimated by Cg On the other hand, when u =T, we have
A" =0and C’, = d*/(30), the bias of C’, tends to be negative for some cases
as shown in ables 1-3 and Figure 5. Thus, Cle is smaller than C[, and the
bias is negative when u = T. This is partially contributed by the fact that A*
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0.024

Fig. 5. Bias plot of C;/k (vs.n) forb = 3,d, = 5/6,d, = 5/4 with & = 0, 1.0, and —1.0 (from
bottom to top in the plot).
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Fig. 6. MSE plot of Cgk (vs.n) for b = 3,d, = 5/6,d, = 5/4 with ¢ = 1.0, -1.0, and 0 (from
bottom to top in the plot).

is calculated to be positive (see Eq.(5)) even when u= T and A" = 0. Clearly,
the presence of A* in Eq. (5) reduces the value of the calculated C . As the
sample size n increases, the mean square error of Cp decreases Proper
sample sizes for capability estimation are essential. The smaller the sample
size is, the higher the value of C"k is required to justify the true process
capablhty

4 A decision making rule for testing Cgk

Using the index C,, the engineers can access the process performance and
monitor the manuftacturing processes on routine basis. To obtain a decision
making rule we consider a testing hypothesis with the null hypothesis C?, < C
(the process is incapable) and the alternative hypothesis Cg > C (the process
is capable). The null hypothesis will be rejected if Cg > ¢y, where the con-
stant c,, called the Crlthdl value, is determined so that the significance level of
the test is o, i.e., P(Cpy > ¢4 gk = C) = a. The decision making rule to be
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Fig. 7. Bias plot of Cgk (vs.n) for ¢ = 0.5,d, = 5/6,d,, = 5/4 withb = 3, 4, and 5 (from bottom
to top in the plot).
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Fig. 8. MSE plot of Cgk (vs.n)for & = 0.5,d, = 5/6,d, = 5/4with b = 3,4, and 5 (from bottom
to top in the plot).

used is then that, for given values of risk « and sample size n, the process will
be considered capable if C” > ¢, and incapable if C” < ¢y
We note that by setting 5 =(u—T)/oand b= cf /o, the index C can
be rewritten as C. =[b+ ¢/ max{l,r}]/3 for ¢<0 and C”k =
[b— Emm{l r}]/3 for E > 0 where r = D;/D,,. Hence, the value of Cp can be
calculated given values of &, b, and r. For example, if (£,b,r) = (—1,3,3/2)
then Co = [3+ (—1)/ max{l, 3/2}]/3 =7/9=0.7778. If C”k = C, we have
=3C— ¢/ max{l, r} for &< 0 and b—3C+§mm{l ri for ¢>0. In
addltlon since B=n'/2(d"/¢) and b =d*/o then B> = nb”. Therefore, if
Cp = C then

. {n(3Cf/max{1,r})2, <0

- . > (11)
n(3C + &min{l,r})", ¢>0.
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Table 4a. Critical values ¢, for C = 1.00 with |¢| = 0.0(0.1)1.0, and sample sizes n = 10(10)100
for T = m and o-risk = 0.01

4 n=10 20 30 40 50 60 70 80 90 100

0.00 1.926 1.500 1.369 1303 1.262 1.233 1.212 1.195 1.182 1.171
0.10  1.988 1.545 1409 1340 1.297 1266 1244 1.226 1.212 1.200
0.20  2.037 1.578 1436 1363 1316 1.284 1.260 1.240 1.225 1.212
0.30 2.075 1.599 1451 1374 1.325 1290 1.265 1.244 1.228 1.214
0.40  2.101 1.612 1458 1378 1327 1.292 1.265 1.245 1.228 1.214
0.50 2.119 1.618 1.460 1379 1328 1.292 1266 1.245 1.228 1.214
0.60  2.130 1.620  1.461 1379 1328 1.292 1.266 1.245 1.228 1.214
0.70  2.136 1.621 1461 1379 1328 1.292 1266 1.245 1.228 1.214
0.80  2.139 1.621 1461 1379 1.328 1.292 1.266 1.245 1228 1214
090 2.141 1.621 1461 1379 1328 1.292 1.266 1.245 1.228 1.214
1.00  2.141 1.621 1.461 1379 1.328 1.292 1.266 1.245 1.228 1.214

Table 4b. Critical values ¢, for C = 1.00 with |¢| = 0.0(0.1)1.0, and sample sizes n = 10(10)100
for T = m and o-risk = 0.05

4 n=10 20 30 40 50 60 70 80 90 100

0.00  1.523 1.300 1.227 1.188 1.163 1.146 1.133 1.123 L.115 1.108
0.10 1.572 1.339  1.262  1.221  1.195 1.177 1.163 1.152 1.143 1.135
0.20 1.610 1.367 1.284 1.240 1.212 1.191 1.176 1.164 1.153 1.145
030  1.639 1.384  1.296 1.249 1218 1.196 1.180 1.166 1.155 1.146
0.40  1.659 1.393  1.301  1.252  1.220 1.197 1.180 1.167 1.156 1.147
0.50  1.671 1.397 1303 1.252 1.220 1.197 1.180 1.167 1.156 1.147
0.60 1.679 1.399  1.303  1.252  1.220  1.197 1.180 1.167 1.156 1.147
0.70  1.683 1.399 1303 1.252 1.220 1.197 1.180 1.167 1.156 1.147
0.80  1.685 1.399  1.303  1.252  1.220  1.197 1.180 1.167 1.156  1.147
090 1.686 1.399  1.303 1.252 1.220 1.197 1.180 1.167 1.156 1.147
1.00  1.686 1.399  1.303  1.252  1.220  1.197 1.180 1.167 1.156 1.147

We can use the central chi-square distribution and the normal distribution to
find the critical value ¢, satisfying P(C" >¢|Ch =C) =0, ie,
11— Fc” (cy) = o given Cpk = C. We note that c, is larger than zero in gen-
eral, h€nce we can find c, by Eq. (9)

B’
/ F(L(c ) (y)dy = o, (12)
0

where B? is given in Eq. (11) and L(c,,y) = (n — 1)(B — yl/z)z/(9nc§).
We pomt out that if T = m (symmetric tolerance) then Cp reduces to
Cpk and C reduces to Cpk We note that the critical values ¢, for &= ¢,
and &= —50 are the same when T =m (for the proof see Appendix B).
Tables 4a—7b display the critical values ¢, for C = 1.00, 1.33,1.66, and 2.00
with sample sizes n = 10(10)100, |¢| = 0.0(0.1)1.0 and o-risk = 0.01 and 0.05
for T = m.
To test if the process meets the capability (quality) requirement, we first
determine the value of C and the a-risk. Since both the process parameters u
and ¢ are unknown, then parameter ¢ = (1 — T) /o is also unknown. But, we
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Table 5a. Critical values ¢, for C = 1.33
for T = m and o-risk = 0.01

129

with €] = 0.0(0.1)1.0, and sample sizesn = 10(10)100

[€| n=10 20 30 40 50 60 70 80 90 100
0.00 2.606 2.017 1.837 1.746 1.689 1.650 1.620 1.597 1.579 1.564
0.10  2.667 2.062 1.877 1.782 1.723 1.682 1.652 1.628 1.608 1.592
020 2.716 2.094 1902 1.804 1.742 1.698 1.666 1.641 1.620 1.603
0.30 2.751 2,113 1915 1813 1.749 1.704 1.670 1.644 1.622 1.605
040 2.776 2,124 1921 1.817 1.751  1.705 1.671 1.644 1.623 1.605
0.50 2.792 2,129 1923 1.817 1.751 1.705 1.671 1.644 1.623 1.605
0.60  2.802 2,131 1924 1.817 1.751  1.705 1.671 1.644 1.623 1.605
0.70  2.807 2,132 1924 1.817 1.751 1705 1.671 1.644 1.623 1.605
0.80  2.809 2,132 1924 1817 1.751 1.705 1.671 1.644 1.623 1.605
090 2811 2,132 1924 1.817 1.751 1.705 1.671 1.644 1.623 1.605
1.00 2.811 2132 1924 1817 1.751 1.705 1.671 1.644 1.623 1.605
Table 5b. Critical values ¢, for C = 1.33 with |£| = 0.0(0.1)1.0, and sample sizesn = 10(10)100
for T = m and o-risk = 0.05

[€| n=10 20 30 40 50 60 70 80 90 100
0.00  2.062 1.750 1.647 1593 1.558 1.534 1.516 1.502 1.491 1.481
0.10  2.111 1.789 1.682 1.626 1.590 1.564 1.545 1.530 1.518 1.508
0.20  2.149 1.815 1.703 1.644 1.605 1.578 1.557 1.541 1.528 1.516
0.30 2.176 1.831 1.714 1.651 1.611 1.582 1.560 1.543 1.529 1.518
040 2.194 1.840 1719 1.654 1.612 1.583 1.561 1.544 1.529 1.518
0.50  2.206 1.843 1.720 1.654 1.612 1.583 1.561 1.544 1.529 1.518
0.60 2213 1.845 1720 1.654 1.612 1.583 1.561 1.544 1.529 1.518
0.70 2217 1.845 1720 1.654 1.612 1.583 1.561 1.544 1.529 1.518
0.80 2.219 1.845 1720 1.654 1.612 1.583 1.561 1.544 1.529 1.518
0.90 2219 1.845 1720 1.654 1.612 1.583 1.561 1.544 1.529 1.518
1.00  2.220 1.845 1720 1.654 1.612 1.583 1.561 1.544 1.529 1.518
Table 6a. Critical values ¢, for C = 1.66 with |¢| = 0.0(0.1)1.0, and sample sizesn = 10(10)100
for T = m and o-risk = 0.01

[€| n=10 20 30 40 50 60 70 80 90 100
0.00 3.287 2.535 2306 2.190 2.117 2.067 2.029 2.000 1977 1.958
0.10  3.349 2.580 2346 2226 2.151 2.099 2.060 2.030 2.006 1.986
0.20  3.396 2,611 2370 2246 2.168 2114 2.074 2.042 2.016 1.995
0.30 3.431 2,630 2382 2255 2175 2119 2.077 2044 2018 1.997
0.40 3455 2,639 2387 2258 2.177 2120 2.078 2.045 2.019 1.997
0.50  3.469 2,644 2389 2258 2.177 2120 2.078 2.045 2.019 1.997
0.60  3.479 2,646 2389 2.258 2.177 2120 2.078 2.045 2.019 1.997
0.70  3.483 2,646 2389 2258 2.177 2120 2.078 2.045 2.019 1.997
0.80  3.486 2.646 2389 2258 2177 2.120 2.078 2.045 2.019 1.997
0.90  3.487 2,646 2389 2.258 2.177 2120 2.078 2.045 2.019 1.997
1.00  3.487 2,646 2389 2258 2.177 2.120 2.078 2.045 2.019 1.997

can estimate ¢ by calculating the value ¢ = (X — T)/S from the sample. If the
estimated value C”, is larger than the critical value c,(C”, > c,), then we
k o \ —pk "
conclude that the process meets the capability requirement (Cpk > Q).
Otherwise, we do not have sufficient information to conclude that the process
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= 0.0(0.1)1.0, and sample sizes n = 10(10)100

for T = m and o-risk = 0.05

¢ =10 20 30 40 50 60 70 80 90 100
0.00 2.603 2200 2.068 1.998 1.954 1923 1900 1.882 1.867 1.855
0.10  2.651 2239 2,103 2031 1985 1.953 1928 1909 1.894 1.881
020 2.689 2265 2124 2.048 2.000 1966 1.940 1919 1903 1.889
030 2715 2280 2134 2.056 2.005 1970 1.943 1922 1904 1.889
040 2.733 2288 2.138 2.058 2.006 1970 1.943 1.922 1904 1.890
0.50 2.744 2291 2139 2.058 2.006 1970 1.943 1922 1904 1.890
0.60 2.751 2293  2.140 2.058 2.006 1.970 1.943 1.922 1.904 1.890
0.70 2.754 2293 2140 2.058 2.006 1.970 1.943 1922 1904 1.890
0.80 2.756 2293 2,140 2.058 2.006 1.970 1.943 1.922 1.904 1.890
090 2.756 2293 2140 2.058 2.006 1.970 1.943 1.922 1904 1.890
1.00  2.757 2294 2,140 2.058 2.006 1970 1943 1922 1.904 1.890
Table 7a. Critical values ¢, for C = 2.00 with [&| 0.0(0.1)1.0, and sample sizesn = 10(10)100
for T = m and o-risk = 0.01.

¢ =10 20 30 40 50 60 70 80 90 100
0.00  3.991 3.070 2.790 2.647 2559 2498 2451 2416 2387 2.364
0.10 4.052 3115 2.829 2,683 2592 2529 2482 2446 2416 2.391
0.20  4.099 3.145 2.853 2.703 2.609 2.543 2495 2456 2426 2.400
0.30 4.133 3.163  2.864 2711 2615 2548 2498 2459 2427 2401
040 4.156 3.172  2.869 2.713 2616 2549 2498 2459 2428 2402
0.50  4.170 3.176  2.870 2.714 2.616 2.549 2498 2459 2428 2402
0.60 4.178 3.178 2.871 2.714 2616 2549 2498 2459 2428 2402
0.70  4.183 3.179 2871 2714 2616 2549 2498 2459 2428 2.402
0.80 4.185 3.179 2871 2714 2616 2549 2498 2459 2428 2402
090 4.186 3.179 2871 2714 2616 2549 2498 2459 2428 2.402
1.00  4.186 3.179 2871 2.714 2616 2549 2498 2459 2428 2402
Table 7b. Critical values ¢, for C = 2.00 with [&| 0.0(0.1)1.0, and sample sizes n = 10(10)100
for T = m and o-risk = 0.05.

g =10 20 30 40 50 60 70 80 90 100
0.00 3.160 2,665 2502 2417 2362 2324 2295 2273 2255 2240
0.10  3.209 2.704 2537 2449 2393 2353 2324 2301 2282 2.266
0.20  3.246 2.729 2557 2466 2407 2366 2334 2310 2290 2.273
0.30 3.272 2.744 2567 2472 2412 2369 2337 2312 2291 2274
040  3.289 2751 2571 2474 2413 2370 2337 2312 2291 2274
0.50  3.300 2.755 2572 2475 2413 2370 2337 2312 2291 2274
0.60  3.306 2.756  2.572 2475 2413 2370 2337 2312 2291 2274
0.70  3.309 2,756  2.572 2475 2413 2370 2337 2312 2291 2274
0.80  3.311 2.756  2.572 2475 2413 2370 2337 2312 2291 2274
090 3.312 2,756  2.572 2475 2413 2370 2337 2312 2291 2274
.00 3.312 2756  2.572 2475 2413 2370 2337 2312 2291 2274

meets the present capability requirement.
Cp < C (the process is incapable).

In this case, we would believe that

We also can calculate the p-value, i.e. the probability that C"k exceed the
observed estimated index given the values of C, ¢ = (u—T)/o, r = D;/D,,
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and sample size n, and then compare this probability with the significance
level o. If the estimated index value is ¢y, given the values of C, ¢, r, and
sample size n, then the p-value can be calculated as:

p-value= P(C"k>co|Cpk—C)—l —Fen, (co)
BZ

— [ FeLtens)s = (qrolg:
0

o G e e AT

(13)

where D, /d* = 1/ min{1, r}j D,/d* = max{1,r}, B? is given in Eq. (11) and
L(co,y) = (n—1)(B — yl/z) /(9nc3). The numerical calculations can be easily
carried out using the Maple computer software, to integrate the function
based on the central chi-square distribution and the normal distribution. If
the p-value is smaller than the o-risk, than we conclude that the process meets
the capability requirement (Cgk > (). Otherwise, we do not have sufficient
information to conclude that the process meets the present capability
requirement. In this case, we would believe that Cgk < C (the process is
incapable).

As an example, we consider the following normally distributed process
with asymmetric specification tolerances LSL =20, T =26.5, and
USL =32. We note that d =(USL—-LSL)/2=6, D, =T — LSL =6.5,
D,=USL-T=5.5,d" = min{D,;,D,} =5.5, r =D;/D, = 1.18. To test if
the process meets the capability (quality) requirement, we first determine
C =1.33, i.e., we define a process with Cg > 1.33 is capable. If the sample
size n = 100, the sample mean X = 27, and the sample standard deviation
S = 1.10. We can calculate A* = max{d*(X T)/D,, d (T — X)/D,} = 0.5,
E=(X— T)/S = 0.45, and C"k = 1.515. We find the corresponding p- ~value
is 0.055 using the Maple computer software to calculate Eq. (13). We
conclude that the process meets the capability requirement if the a-risk is set
larger than 0.055. If the o-risk is set smaller than 0.055, we do not have
sufficient information to conclude that the process meets the present capa-
bility requirement.

5 An application example

The example presented in the following concerns with the capability of a
process, which produces electronic telecommunication amplifiers (see Pearn
et al. (2001)). The original data and a complete description of this process are
given in Juran Institute (1990). The quality characteristic of interest is the
gain (the boosting ability) of an amplifier. The design of the amplifiers had
called for a gain of 10 decibels (dB) and allowed the amplifiers to be con-
sidered acceptable if the gain fell between 7.75 dB and 12.25 dB, i.e
(LSL, T,USL) = (7.75,10,12.25). A sample of the gains of 120 amplifiers was
taken by the quality improvement team to estimate the capability of the
manufacturing process producing the amplifiers. Chou et al. (1998) noted that
the data follow a non-Normal distribution. The data were then fitted by an Sp
distribution. They also transformed the data to approximate Normality using
the estimated transformation
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Table 8. The original amplifier gain data

8.1 10.4 8.8 9.7 7.8 9.9 11.7 8.0 9.3 9.0
8.2 8.9 10.1 9.4 9.2 7.9 9.5 10.9 7.8 8.3
9.1 8.4 9.6 11.1 7.9 8.5 8.7 7.8 10.5 8.5
11.5 8.0 7.9 8.3 8.7 10.0 9.4 9.0 9.2 10.7
9.3 9.7 8.7 8.2 8.9 8.6 9.5 9.4 8.8 8.3
8.4 9.1 10.1 7.8 8.1 8.8 8.0 9.2 8.4 7.8
7.9 8.5 9.2 8.7 10.2 7.9 9.8 8.3 9.0 9.6
9.9 10.6 8.6 9.4 8.8 8.2 10.5 9.7 9.1 8.0
8.7 9.8 8.5 8.9 9.1 8.4 8.1 9.5 8.7 9.3
8.1 10.1 9.6 8.3 8.0 9.8 9.0 8.9 8.1 9.7
8.5 8.2 9.0 10.2 9.5 8.3 8.9 9.1 10.3 8.4
8.6 9.2 8.5 9.6 9.0 10.7 8.6 10.0 8.8 8.6

;LsL T UsL

R A
207 ]
154
107
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Fig. 9. Histogram of the 120 untransformed amplifier gain data with (LSL, T, USL) = (7.75, 10,
12.25).

Z =0.96 +0.98 ln( X-759 >

4.68 +7.59 - X

We note that a significant error may be introduced if someone use the original
specification limits, (LSL, T, USL) = (7.75, 10, 12.25), to evaluate the quality
through the transformed data. Using the estimated transformation Eq. (14),
we have the transformed specification (LSL', T, USL') = (-2.31,1.00, 5.06)
as well as the transformed data.

Table 8 displays the sample of the original gains of 120 amplifiers listed in
Juran Institute (1990). A histogram of the data, with the specification limits, is
given in Figure 9. Table 9 displays the corresponding transformed amplifier
gain data, using the estimated transformation in Eq. (14). A histogram of the
transformed data, with the transformed specification limits, is given in
Figure 10. We may now apply a normal-based SPC procedure to the trans-
formed data. We note that the transformed specification (LSL’, T/, USL') is
asymmetric. Therefore, we apply the proposed generalization C), to the
transformed data. To test if the quality of the amplifiers meets the quality

(14)
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Table 9. The transformed amplifier gain data

-1.1 1.4 -0.1 0.8 -2.0 0.9 2.9 -1.3 0.4 0.1
09 0.0 L1 0.5 03  -16 06 18 20  -07
0.2 -0.6 0.7 2.0 -1.6 -0.4 -0.2 -2.0 1.4 -0.4
2.6 -1.3 -1.6 -0.7 -0.2 1.0 0.5 0.1 0.3 1.6
0.4 0.8 -0.2 -0.9 0.0 -0.3 0.6 0.5 =0.1 -0.7
-0.6 0.2 1.1 -2.0 -1.1 =0.1 -1.3 0.3 -0.6 -2.0
-6 04 03 -02 12 -16 09 -07 0l 0.7
0.9 1.5 -0.3 0.5 —0.1 -0.9 1.4 0.8 0.2 -1.3
02 09 -04 00 02 -06 -LI 0.6  -02 04
=11 1.1 0.7 -0.7 -1.3 0.9 0.1 0.0 1.1 0.8
~04  -09 ol 12 06 07 00 02 13  -06
-0.3 0.3 -0.4 0.7 0.1 1.6 -0.3 1.0 =0.1 -0.3
LsL' T usL'
251 —
201 ]
151 ]
10
5_
U_' LI L | T T T T TT ~r T 11T T T T

Fig. 10. Histogram of the 120 transformed amplifier gain data with (LSL’, T°, USL’) = (-2.31,
1.00, 5.06).

requirement we first determine C = 1.00, i.e., we define a process with
Cpx > 1.00 is capable. We then calculate d = (USL’ — LSL’)/Z =3.685,d" =
mm{Du, D,} = m1n{4 06,3.31} =3.31,n =120, Z =", Zi/n = 0.000713,
S? = S (Zi - Z) /(n— 1) =0.985, S=0.993, A* = max{d (Z — T’)/Du,
d"(T' — )/D[} - max{—0.815 0999}—0999 f—(Z T)/S = —1.007,
and C/, = (d* - A")/(3S) =0. 776. We then find the corresponding p-value
be 0. 9599 using the Maple computer software to calculate Eq. (13). Obvi-
ogsly, the quality of the amplifiers does not meet the quality requirement:
C, > 1.00.

P While all the 120 amplifiers fell within the specification limits, the low
value of C"k shows that the average quallty of the amphﬁers significantly
deviates from the target value, which is unsatisfactory causing the commu-
nication failed. The quality improvement team could now concentrate their
investigations to find problems causing the manufacturing line incapable, and
find ways to make the process average closer to the target value. Some quality
improvement activities involving Taguchi’s parameter designs should be ini-
tiated to identify the significant factors causing the process failing to cluster
around the target value.
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6 Conclusions

Pearn and Chen (1998) proposed the new generalization Cgk which was
shown to be superior to other existing generalizations of C, for processes
with asymmetric tolerances. In this paper, we investigated the relation be-
tween the fraction nonconforming and the value of C,. We also obtained the
cumulative distribution function and the probability density function of the
estimated index C/, for processes with normal distributions. We showed that
the cumulative distribution function and the probability density function of
C’\ can be expressed in terms of a mixture of the chi-square distribution and
the normal distribution. Consequently, the complexity for analyzing the
statistical properties of Cgk is greatly simplified. We also analyzed the bias
and the MSE of the estimated index C, for normally distributed processes.
Furthermore, we also developed a decision making rule, based on the natural
estimator Cgk. The function of p-value was given and the numerical calcu-
lations of p-value can be easily carried out using mathematical computer
softwares, e.g., Mathematica, Maple, and MatLab. Therefore, the practitio-
ners can use the proposed decision making rules to test whether the process
with asymmetric tolerance is capable or not.
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Appendix A: Derivation of Eq. (9)

Under the assumption of normality, the cumulative distribution function and
the probability density function of Cgk can be derived as follows.

[Case I]: For x > 0, using the technique of conditioning Cgk on Y in Eq. (6),
we may obtain

Vvn—1(B - VY
chk(x) =P(C <x) = P( 3\(/HK ) < x)

:1—P<\/ﬁ< ”n_l(;i_ﬁ)>

- /OOP<\/R < —W)fy(y) dy.
0 X

. C e vn-1(B-
Since K is distributed as y2_;, then P(\/nK < w> =0 for y > B?
and x > 0. Hence,

B’ N —_
Feo (x) =1~ / P(ﬁ < M).fy(wdy

pk 3X

Bz
=1 [ PK <L) Ay

BZ
—1- / Fe(L(xy)) fr(y)dy, for x>0, (A1)

where B =n'2(d"/s), L(x,y)= (n—1)(B—y"/2)?/(9nx?), Fg(:) is the
cumulative distribution function of K, and fy(-) is the probability density
function of Y expressed as Eq. (8).

[Case II]: Since K is distributed as z2_,, then P<\/nK < w) =0
for x < 0 and y < B%. Hence,

Feo (x) = /B p (ﬂ < —W) Fely)dy

= /: P(K < L(x,y)) fv(y)dy

= /l: Fx(L(x,y)) fy(y)dy, forx <O. (A2)
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[Case III]: For x =0, we have

Fer, (0) =P(Cly < 0) = P(‘/rtj\(/]z_lz vY) < 0)
- P(B VY < 0)
=1-P(Y <B?
=1 - Fy(B%, (A3)

where Fy(+) is the cumulative distribution function of Y expressed as Eq. (7).

Combining Egs. (Al), (A2) and (A3) we obtain Eq. (9) for the
cumulative distribution function of C”,. Taking the derivative of the
cumulative distribution functlon of Cgk with Leibniz’s rule and changing
the variable with t = y/B?, we obtain the probability density function of
C"k in Eq. (10).

Appendix B: Symmetry property of ¢

Following we will show that given the same values of C, n, and « the critical
values ¢, for & = &, and & = —¢ are the same when T = m.
Smce if T=m then r=D;/D,=1 and by Eq. (11) B> =D?=
(d/a) =n(3C + [¢])* given Cp = C. Furthermore, 6 =n'?(u—T)/o =
n'/2¢ and fy(y) expressed as Eq. (8) reduces to

fr(y) = f«hf v él+ ¢y + vné)

\[( (VY = volg] + ¢[yy + vnlé])), for T=m. (A4)

Therefore, the Eq. (12) reduces to
D?

/&M%Wﬁ@@z% (AS)

0

where L(c,,y) = (n— 1)(D —y"/2)?/(9nc?) with D =n'/2(3C +[¢|) given
C"k = C and fy(y) expressed as Eq. (A4). We get the same equation if we
substltute ¢ by & and ( £o) into Eq. (AS) given the same values of C, n, and
a. Therefore, Eq. (AS) is an even function of ¢ for case T = m. Hence, given
the same values of C, n, and « the critical values ¢, for ¢ = &y and & = —&; are
the same when T = m.



